Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unbiased Evaluation of Deep Metric Learning Algorithms (1911.12528v1)

Published 28 Nov 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Deep metric learning (DML) is a popular approach for images retrieval, solving verification (same or not) problems and addressing open set classification. Arguably, the most common DML approach is with triplet loss, despite significant advances in the area of DML. Triplet loss suffers from several issues such as collapse of the embeddings, high sensitivity to sampling schemes and more importantly a lack of performance when compared to more modern methods. We attribute this adoption to a lack of fair comparisons between various methods and the difficulty in adopting them for novel problem statements. In this paper, we perform an unbiased comparison of the most popular DML baseline methods under same conditions and more importantly, not obfuscating any hyper parameter tuning or adjustment needed to favor a particular method. We find, that under equal conditions several older methods perform significantly better than previously believed. In fact, our unified implementation of 12 recently introduced DML algorithms achieve state-of-the art performance on CUB200, CAR196, and Stanford Online products datasets which establishes a new set of baselines for future DML research. The codebase and all tuned hyperparameters will be open-sourced for reproducibility and to serve as a source of benchmark.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.