Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks? (1911.12360v4)

Published 27 Nov 2019 in cs.LG, math.OC, and stat.ML

Abstract: A recent line of research on deep learning focuses on the extremely over-parameterized setting, and shows that when the network width is larger than a high degree polynomial of the training sample size $n$ and the inverse of the target error $\epsilon{-1}$, deep neural networks learned by (stochastic) gradient descent enjoy nice optimization and generalization guarantees. Very recently, it is shown that under certain margin assumptions on the training data, a polylogarithmic width condition suffices for two-layer ReLU networks to converge and generalize (Ji and Telgarsky, 2019). However, whether deep neural networks can be learned with such a mild over-parameterization is still an open question. In this work, we answer this question affirmatively and establish sharper learning guarantees for deep ReLU networks trained by (stochastic) gradient descent. In specific, under certain assumptions made in previous work, our optimization and generalization guarantees hold with network width polylogarithmic in $n$ and $\epsilon{-1}$. Our results push the study of over-parameterized deep neural networks towards more practical settings.

Citations (117)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.