Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Error Bounds for Reduced Order Model Predictive Control (1911.12349v2)

Published 27 Nov 2019 in eess.SY and cs.SY

Abstract: Model predictive control is a powerful framework for enabling optimal control of constrained systems. However, for systems that are described by high-dimensional state spaces this framework can be too computationally demanding for real-time control. Reduced order model predictive control (ROMPC) frameworks address this issue by leveraging model reduction techniques to compress the state space model used in the online optimal control problem. While this can enable real-time control by decreasing the online computational requirements, these model reductions introduce approximation errors that must be accounted for to guarantee constraint satisfaction and closed-loop stability for the controlled high-dimensional system. In this work we propose an offline methodology for efficiently computing error bounds arising from model reduction, and show how they can be used to guarantee constraint satisfaction in a previously proposed ROMPC framework. This work considers linear, discrete, time-invariant systems that are compressed by Petrov-Galerkin projections, and considers output-feedback settings where the system is also subject to bounded disturbances.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.