Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A tale of two toolkits, report the second: bake off redux. Chapter 1. dictionary based classifiers (1911.12008v1)

Published 27 Nov 2019 in cs.LG and stat.ML

Abstract: Time series classification (TSC) is the problem of learning labels from time dependent data. One class of algorithms is derived from a bag of words approach. A window is run along a series, the subseries is shortened and discretised to form a word, then features are formed from the histogram of frequency of occurrence of words. We call this type of approach to TSC dictionary based classification. We compare four dictionary based algorithms in the context of a wider project to update the great time series classification bakeoff, a comparative study published in 2017. We experimentally characterise the algorithms in terms of predictive performance, time complexity and space complexity. We find that we can improve on the previous best in terms of accuracy, but this comes at the cost of time and space. Alternatively, the same performance can be achieved with far less cost. We review the relative merits of the four algorithms before suggesting a path to possible improvement.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube