Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalizing Complex Hypotheses on Product Distributions: Auctions, Prophet Inequalities, and Pandora's Problem (1911.11936v2)

Published 27 Nov 2019 in cs.GT and cs.LG

Abstract: This paper explores a theory of generalization for learning problems on product distributions, complementing the existing learning theories in the sense that it does not rely on any complexity measures of the hypothesis classes. The main contributions are two general sample complexity bounds: (1) $\tilde{O} \big( \frac{nk}{\epsilon2} \big)$ samples are sufficient and necessary for learning an $\epsilon$-optimal hypothesis in any problem on an $n$-dimensional product distribution, whose marginals have finite supports of sizes at most $k$; (2) $\tilde{O} \big( \frac{n}{\epsilon2} \big)$ samples are sufficient and necessary for any problem on $n$-dimensional product distributions if it satisfies a notion of strong monotonicity from the algorithmic game theory literature. As applications of these theories, we match the optimal sample complexity for single-parameter revenue maximization (Guo et al., STOC 2019), improve the state-of-the-art for multi-parameter revenue maximization (Gonczarowski and Weinberg, FOCS 2018) and prophet inequality (Correa et al., EC 2019), and provide the first and tight sample complexity bound for Pandora's problem.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.