Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Starling: A Scalable Query Engine on Cloud Function Services (1911.11727v1)

Published 26 Nov 2019 in cs.DB

Abstract: Much like on-premises systems, the natural choice for running database analytics workloads in the cloud is to provision a cluster of nodes to run a database instance. However, analytics workloads are often bursty or low volume, leaving clusters idle much of the time, meaning customers pay for compute resources even when unused. The ability of cloud function services, such as AWS Lambda or Azure Functions, to run small, fine granularity tasks make them appear to be a natural choice for query processing in such settings. But implementing an analytics system on cloud functions comes with its own set of challenges. These include managing hundreds of tiny stateless resource-constrained workers, handling stragglers, and shuffling data through opaque cloud services. In this paper we present Starling, a query execution engine built on cloud function services that employs number of techniques to mitigate these challenges, providing interactive query latency at a lower total cost than provisioned systems with low-to-moderate utilization. In particular, on a 1TB TPC-H dataset in cloud storage, Starling is less expensive than the best provisioned systems for workloads when queries arrive 1 minute apart or more. Starling also has lower latency than competing systems reading from cloud object stores and can scale to larger datasets.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.