Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A discriminative condition-aware backend for speaker verification (1911.11622v1)

Published 26 Nov 2019 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: We present a scoring approach for speaker verification that mimics the standard PLDA-based backend process used in most current speaker verification systems. However, unlike the standard backends, all parameters of the model are jointly trained to optimize the binary cross-entropy for the speaker verification task. We further integrate the calibration stage inside the model, making the parameters of this stage depend on metadata vectors that represent the conditions of the signals. We show that the proposed backend has excellent out-of-the-box calibration performance on most of our test sets, making it an ideal approach for cases in which the test conditions are not known and development data is not available for training a domain-specific calibration model.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.