Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Efficient Video Representation with Video Shuffle Networks (1911.11319v1)

Published 26 Nov 2019 in cs.CV

Abstract: 3D CNN shows its strong ability in learning spatiotemporal representation in recent video recognition tasks. However, inflating 2D convolution to 3D inevitably introduces additional computational costs, making it cumbersome in practical deployment. We consider whether there is a way to equip the conventional 2D convolution with temporal vision no requiring expanding its kernel. To this end, we propose the video shuffle, a parameter-free plug-in component that efficiently reallocates the inputs of 2D convolution so that its receptive field can be extended to the temporal dimension. In practical, video shuffle firstly divides each frame feature into multiple groups and then aggregate the grouped features via temporal shuffle operation. This allows the following 2D convolution aggregate the global spatiotemporal features. The proposed video shuffle can be flexibly inserted into popular 2D CNNs, forming the Video Shuffle Networks (VSN). With a simple yet efficient implementation, VSN performs surprisingly well on temporal modeling benchmarks. In experiments, VSN not only gains non-trivial improvements on Kinetics and Moments in Time, but also achieves state-of-the-art performance on Something-Something-V1, Something-Something-V2 datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube