Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

My Approach = Your Apparatus? Entropy-Based Topic Modeling on Multiple Domain-Specific Text Collections (1911.11240v1)

Published 25 Nov 2019 in cs.IR and cs.DL

Abstract: Comparative text mining extends from genre analysis and political bias detection to the revelation of cultural and geographic differences, through to the search for prior art across patents and scientific papers. These applications use cross-collection topic modeling for the exploration, clustering, and comparison of large sets of documents, such as digital libraries. However, topic modeling on documents from different collections is challenging because of domain-specific vocabulary. We present a cross-collection topic model combined with automatic domain term extraction and phrase segmentation. This model distinguishes collection-specific and collection-independent words based on information entropy and reveals commonalities and differences of multiple text collections. We evaluate our model on patents, scientific papers, newspaper articles, forum posts, and Wikipedia articles. In comparison to state-of-the-art cross-collection topic modeling, our model achieves up to 13% higher topic coherence, up to 4% lower perplexity, and up to 31% higher document classification accuracy. More importantly, our approach is the first topic model that ensures disjunct general and specific word distributions, resulting in clear-cut topic representations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.