Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A Novel Unsupervised Post-Processing Calibration Method for DNNS with Robustness to Domain Shift (1911.11195v1)

Published 25 Nov 2019 in cs.LG and stat.ML

Abstract: The uncertainty estimation is critical in real-world decision making applications, especially when distributional shift between the training and test data are prevalent. Many calibration methods in the literature have been proposed to improve the predictive uncertainty of DNNs which are generally not well-calibrated. However, none of them is specifically designed to work properly under domain shift condition. In this paper, we propose Unsupervised Temperature Scaling (UTS) as a robust calibration method to domain shift. It exploits unlabeled test samples instead of the training one to adjust the uncertainty prediction of deep models towards the test distribution. UTS utilizes a novel loss function, weighted NLL, which allows unsupervised calibration. We evaluate UTS on a wide range of model-datasets to show the possibility of calibration without labels and demonstrate the robustness of UTS compared to other methods (e.g., TS, MC-dropout, SVI, ensembles) in shifted domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.