Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Feature Attribution through Input-specific Network Pruning (1911.11081v2)

Published 25 Nov 2019 in cs.CV

Abstract: Attributing the output of a neural network to the contribution of given input elements is a way of shedding light on the black-box nature of neural networks. Due to the complexity of current network architectures, current gradient-based attribution methods provide very noisy or coarse results. We propose to prune a neural network for a given single input to keep only neurons that highly contribute to the prediction. We show that by input-specific pruning, network gradients change from reflecting local (noisy) importance information to global importance. Our proposed method is efficient and generates fine-grained attribution maps. We further provide a theoretical justification of the pruning approach relating it to perturbations and validate it through a novel experimental setup. Our method is evaluated by multiple benchmarks: sanity checks, pixel perturbation, and Remove-and-Retrain (ROAR). These benchmarks evaluate the method from different perspectives and our method performs better than other methods across all evaluations.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube