Papers
Topics
Authors
Recent
2000 character limit reached

Algorithmic Bias in Recidivism Prediction: A Causal Perspective (1911.10640v1)

Published 24 Nov 2019 in stat.ME, cs.AI, cs.LG, and stat.ML

Abstract: ProPublica's analysis of recidivism predictions produced by Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) software tool for the task, has shown that the predictions were racially biased against African American defendants. We analyze the COMPAS data using a causal reformulation of the underlying algorithmic fairness problem. Specifically, we assess whether COMPAS exhibits racial bias against African American defendants using FACT, a recently introduced causality grounded measure of algorithmic fairness. We use the Neyman-Rubin potential outcomes framework for causal inference from observational data to estimate FACT from COMPAS data. Our analysis offers strong evidence that COMPAS exhibits racial bias against African American defendants. We further show that the FACT estimates from COMPAS data are robust in the presence of unmeasured confounding.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.