Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Prioritized Multi-agent Path Finding for Differential Drive Robots (1911.10578v1)

Published 24 Nov 2019 in cs.RO and cs.MA

Abstract: Methods for centralized planning of the collision-free trajectories for a fleet of mobile robots typically solve the discretized version of the problem and rely on numerous simplifying assumptions, e.g. moves of uniform duration, cardinal only translations, equal speed and size of the robots etc., thus the resultant plans can not always be directly executed by the real robotic systems. To mitigate this issue we suggest a set of modifications to the prominent prioritized planner -- AA-SIPP(m) -- aimed at lifting the most restrictive assumptions (syncronized translation only moves, equal size and speed of the robots) and at providing robustness to the solutions. We evaluate the suggested algorithm in simulation and on differential drive robots in typical lab environment (indoor polygon with external video-based navigation system). The results of the evaluation provide a clear evidence that the algorithm scales well to large number of robots (up to hundreds in simulation) and is able to produce solutions that are safely executed by the robots prone to imperfect trajectory following. The video of the experiments can be found at https://youtu.be/Fer_irn4BG0.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.