Papers
Topics
Authors
Recent
2000 character limit reached

Smoothed complexity of local Max-Cut and binary Max-CSP (1911.10381v1)

Published 23 Nov 2019 in cs.DS and cs.CC

Abstract: We show that the smoothed complexity of the FLIP algorithm for local Max-Cut is at most $\smash{\phi n{O(\sqrt{\log n})}}$, where $n$ is the number of nodes in the graph and $\phi$ is a parameter that measures the magnitude of perturbations applied on its edge weights. This improves the previously best upper bound of $\phi n{O(\log n)}$ by Etscheid and R\"{o}glin. Our result is based on an analysis of long sequences of flips, which shows~that~it is very unlikely for every flip in a long sequence to incur a positive but small improvement in the cut weight. We also extend the same upper bound on the smoothed complexity of FLIP to all binary Maximum Constraint Satisfaction Problems.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.