Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Kernelized Multiview Subspace Analysis by Self-weighted Learning (1911.10357v3)

Published 23 Nov 2019 in cs.LG and cs.MM

Abstract: With the popularity of multimedia technology, information is always represented or transmitted from multiple views. Most of the existing algorithms are graph-based ones to learn the complex structures within multiview data but overlooked the information within data representations. Furthermore, many existing works treat multiple views discriminatively by introducing some hyperparameters, which is undesirable in practice. To this end, abundant multiview based methods have been proposed for dimension reduction. However, there are still no research to leverage the existing work into a unified framework. To address this issue, in this paper, we propose a general framework for multiview data dimension reduction, named Kernelized Multiview Subspace Analysis (KMSA). It directly handles the multi-view feature representation in the kernel space, which provides a feasible channel for direct manipulations on multiview data with different dimensions. Meanwhile, compared with those graph-based methods, KMSA can fully exploit information from multiview data with nothing to lose. Furthermore, since different views have different influences on KMSA, we propose a self-weighted strategy to treat different views discriminatively according to their contributions. A co-regularized term is proposed to promote the mutual learning from multi-views. KMSA combines self-weighted learning with the co-regularized term to learn appropriate weights for all views. We also discuss the influence of the parameters in KMSA regarding the weights of multi-views. We evaluate our proposed framework on 6 multiview datasets for classification and image retrieval. The experimental results validate the advantages of our proposed method.

Citations (99)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube