Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Aggregative Efficiency of Bayesian Learning in Networks (1911.10116v9)

Published 22 Nov 2019 in econ.TH, cs.SI, econ.GN, and q-fin.EC

Abstract: When individuals in a social network learn about an unknown state from private signals and neighbors' actions, the network structure often causes information loss. We consider rational agents and Gaussian signals in the canonical sequential social-learning problem and ask how the network changes the efficiency of signal aggregation. Rational actions in our model are log-linear functions of observations and admit a signal-counting interpretation of accuracy. Networks where agents observe multiple neighbors but not their common predecessors confound information, and even a small amount of confounding can lead to much lower accuracy. In a class of networks where agents move in generations and observe the previous generation, we quantify the information loss with an aggregative efficiency index. Aggregative efficiency is a simple function of network parameters: increasing in observations and decreasing in confounding. Later generations contribute little additional information, even with arbitrarily large generations.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com