Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Worst-case recovery guarantees for least squares approximation using random samples (1911.10111v3)

Published 22 Nov 2019 in math.NA, cs.NA, and math.FA

Abstract: We construct a least squares approximation method for the recovery of complex-valued functions from a reproducing kernel Hilbert space on $D \subset \mathbb{R}d$. The nodes are drawn at random for the whole class of functions and the error is measured in $L_2(D,\varrho_D)$. We prove worst-case recovery guarantees by explicitly controlling all the involved constants. This leads to new preasymptotic recovery bounds with high probability for the error of Hyperbolic Fourier Regression on multivariate data. In addition, we further investigate its counterpart Hyperbolic Wavelet Regression also based on least-squares to recover non-periodic functions from random samples. Finally, we reconsider the analysis of a cubature method based on plain random points with optimal weights and reveal near-optimal worst-case error bounds with high probability. It turns out that this simple method can compete with the quasi-Monte Carlo methods in the literature which are based on lattices and digital nets.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.