Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Visual Relationship Detection with Low Rank Non-Negative Tensor Decomposition (1911.09895v1)

Published 22 Nov 2019 in cs.CV and cs.LG

Abstract: We address the problem of Visual Relationship Detection (VRD) which aims to describe the relationships between pairs of objects in the form of triplets of (subject, predicate, object). We observe that given a pair of bounding box proposals, objects often participate in multiple relations implying the distribution of triplets is multimodal. We leverage the strong correlations within triplets to learn the joint distribution of triplet variables conditioned on the image and the bounding box proposals, doing away with the hitherto used independent distribution of triplets. To make learning the triplet joint distribution feasible, we introduce a novel technique of learning conditional triplet distributions in the form of their normalized low rank non-negative tensor decompositions. Normalized tensor decompositions take form of mixture distributions of discrete variables and thus are able to capture multimodality. This allows us to efficiently learn higher order discrete multimodal distributions and at the same time keep the parameter size manageable. We further model the probability of selecting an object proposal pair and include a relation triplet prior in our model. We show that each part of the model improves performance and the combination outperforms state-of-the-art score on the Visual Genome (VG) and Visual Relationship Detection (VRD) datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.