Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Communication-Efficient and Byzantine-Robust Distributed Learning with Error Feedback (1911.09721v5)

Published 21 Nov 2019 in cs.LG, cs.DC, and stat.ML

Abstract: We develop a communication-efficient distributed learning algorithm that is robust against Byzantine worker machines. We propose and analyze a distributed gradient-descent algorithm that performs a simple thresholding based on gradient norms to mitigate Byzantine failures. We show the (statistical) error-rate of our algorithm matches that of Yin et al.~\cite{dong}, which uses more complicated schemes (coordinate-wise median, trimmed mean). Furthermore, for communication efficiency, we consider a generic class of $\delta$-approximate compressors from Karimireddi et al.~\cite{errorfeed} that encompasses sign-based compressors and top-$k$ sparsification. Our algorithm uses compressed gradients and gradient norms for aggregation and Byzantine removal respectively. We establish the statistical error rate for non-convex smooth loss functions. We show that, in certain range of the compression factor $\delta$, the (order-wise) rate of convergence is not affected by the compression operation. Moreover, we analyze the compressed gradient descent algorithm with error feedback (proposed in \cite{errorfeed}) in a distributed setting and in the presence of Byzantine worker machines. We show that exploiting error feedback improves the statistical error rate. Finally, we experimentally validate our results and show good performance in convergence for convex (least-square regression) and non-convex (neural network training) problems.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.