Emergent Mind

Abstract

In this paper, we strive for solving the ambiguities arisen by the astoundingly high density of raw PseudoLiDAR for monocular 3D object detection for autonomous driving. Without much computational overhead, we propose a supervised and an unsupervised sparsification scheme of PseudoLiDAR prior to 3D detection. Both the strategies assist the standard 3D detector gain better performance over the raw PseudoLiDAR baseline using only ~5% of its points on the KITTI object detection benchmark, thus making our monocular framework and LiDAR-based counterparts computationally equivalent (Figure 1). Moreover, our architecture agnostic refinements provide state-of-the-art results on KITTI3D test set for "Car" and "Pedestrian" categories with 54% relative improvement for "Pedestrian". Finally, exploratory analysis is performed on the discrepancy between monocular and LiDAR-based 3D detection frameworks to guide future endeavours.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.