Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise (1911.09543v2)

Published 21 Nov 2019 in math.NA, cs.NA, and math.PR

Abstract: We discretize the stochastic Allen-Cahn equation with additive noise by means of a spectral Galerkin method in space and a tamed version of the exponential Euler method in time. The resulting error bounds are analyzed for the spatio-temporal full discretization in both strong and weak senses. Different from existing works, we develop a new and direct approach for the weak error analysis, which does not rely on the use of the associated Kolmogorov equation or It^{o}'s formula and is therefore non-Markovian in nature. Such an approach thus has a potential to be applied to non-Markovian equations such as stochastic Volterra equations or other types of fractional SPDEs, which suffer from the lack of Kolmogorov equations. It turns out that the obtained weak convergence rates are, in both spatial and temporal direction, essentially twice as high as the strong convergence rates. Also, it is revealed how the weak convergence rates depend on the regularity of the noise. Numerical experiments are finally reported to confirm the theoretical conclusion.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.