Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An End-to-End Audio Classification System based on Raw Waveforms and Mix-Training Strategy (1911.09349v1)

Published 21 Nov 2019 in eess.AS, cs.CV, cs.LG, and cs.MM

Abstract: Audio classification can distinguish different kinds of sounds, which is helpful for intelligent applications in daily life. However, it remains a challenging task since the sound events in an audio clip is probably multiple, even overlapping. This paper introduces an end-to-end audio classification system based on raw waveforms and mix-training strategy. Compared to human-designed features which have been widely used in existing research, raw waveforms contain more complete information and are more appropriate for multi-label classification. Taking raw waveforms as input, our network consists of two variants of ResNet structure which can learn a discriminative representation. To explore the information in intermediate layers, a multi-level prediction with attention structure is applied in our model. Furthermore, we design a mix-training strategy to break the performance limitation caused by the amount of training data. Experiments show that the mean average precision of the proposed audio classification system on Audio Set dataset is 37.2%. Without using extra training data, our system exceeds the state-of-the-art multi-level attention model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.