Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Voice-Face Cross-modal Matching and Retrieval: A Benchmark (1911.09338v2)

Published 21 Nov 2019 in cs.CV

Abstract: Cross-modal associations between voice and face from a person can be learnt algorithmically, which can benefit a lot of applications. The problem can be defined as voice-face matching and retrieval tasks. Much research attention has been paid on these tasks recently. However, this research is still in the early stage. Test schemes based on random tuple mining tend to have low test confidence. Generalization ability of models can not be evaluated by small scale datasets. Performance metrics on various tasks are scarce. A benchmark for this problem needs to be established. In this paper, first, a framework based on comprehensive studies is proposed for voice-face matching and retrieval. It achieves state-of-the-art performance with various performance metrics on different tasks and with high test confidence on large scale datasets, which can be taken as a baseline for the follow-up research. In this framework, a voice anchored L2-Norm constrained metric space is proposed, and cross-modal embeddings are learned with CNN-based networks and triplet loss in the metric space. The embedding learning process can be more effective and efficient with this strategy. Different network structures of the framework and the cross language transfer abilities of the model are also analyzed. Second, a voice-face dataset (with 1.15M face data and 0.29M audio data) from Chinese speakers is constructed, and a convenient and quality controllable dataset collection tool is developed. The dataset and source code of the paper will be published together with this paper.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.