Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonlinear Covariance Control via Differential Dynamic Programming (1911.09283v1)

Published 21 Nov 2019 in eess.SY and cs.SY

Abstract: We consider covariance control problems for nonlinear stochastic systems. Our objective is to find an optimal control strategy to steer the state from an initial distribution to a terminal one with specified mean and covariance. This problem is considerably more complicated than previous studies on covariance control for linear systems. We leverage a widely used technique - differential dynamic programming - in nonlinear optimal control to achieve our goal. In particular, we adopt the stochastic differential dynamic programming framework to handle the stochastic dynamics. Additionally, to enforce the terminal statistical constraints, we construct a Lagrangian and apply a primal-dual type algorithm. Several examples are presented to demonstrate the effectiveness of our framework.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.