Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Random Fourier Features via Fast Surrogate Leverage Weighted Sampling (1911.09158v1)

Published 20 Nov 2019 in cs.LG and stat.ML

Abstract: In this paper, we propose a fast surrogate leverage weighted sampling strategy to generate refined random Fourier features for kernel approximation. Compared to the current state-of-the-art method that uses the leverage weighted scheme [Li-ICML2019], our new strategy is simpler and more effective. It uses kernel alignment to guide the sampling process and it can avoid the matrix inversion operator when we compute the leverage function. Given n observations and s random features, our strategy can reduce the time complexity from O(ns2+s3) to O(ns2), while achieving comparable (or even slightly better) prediction performance when applied to kernel ridge regression (KRR). In addition, we provide theoretical guarantees on the generalization performance of our approach, and in particular characterize the number of random features required to achieve statistical guarantees in KRR. Experiments on several benchmark datasets demonstrate that our algorithm achieves comparable prediction performance and takes less time cost when compared to [Li-ICML2019].

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.