Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Motion control for autonomous heterogeneous multi-agent area search in uncertain conditions (1911.09137v1)

Published 20 Nov 2019 in math.OC, cs.MA, and cs.RO

Abstract: Using multiple mobile robots in search missions offers a lot of benefits, but one needs a suitable and competent motion control algorithm which is able to consider sensors characteristics, the uncertainty of target detection and complexity of needed maneuvers in order to make a multi-agent search autonomous. This paper provides a methodology for an autonomous two-dimensional search using multiple unmanned search agents. The proposed methodology relies on an accurate calculation of target occurrence probability distribution based on the initial estimated target distribution and continuous action of spatial variant search agent sensors. The core of the autonomous search process is a high-level motion control for multiple search agents which utilizes the probabilistic model of target occurrence via Heat Equation Driven Area Coverage (HEDAC) method. This centralized motion control algorithm is tailored for handling a group of search agents which are heterogeneous in both motion and sensing characteristics. The motion of agents is directed by the gradient of the potential field which provides near-ergodic exploration of the search space. The proposed method is tested on three realistic search mission simulations and compared with three alternative methods, where HEDAC outperforms all alternatives in all tests. Conventional search strategies need about double the time to achieve proportionate detection rate when compared to HEDAC controlled search. The scalability test showed that increasing the number of HEDAC controlled search agents, although somewhat deteriorating the search efficiency, provides needed speed-up of the search. This study shows the flexibility and competence of the proposed method and gives a strong foundation for possible real-world applications.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube