Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Hard Choices in Artificial Intelligence: Addressing Normative Uncertainty through Sociotechnical Commitments (1911.09005v1)

Published 20 Nov 2019 in cs.AI, cs.CY, cs.SY, and eess.SY

Abstract: As AI systems become prevalent in high stakes domains such as surveillance and healthcare, researchers now examine how to design and implement them in a safe manner. However, the potential harms caused by systems to stakeholders in complex social contexts and how to address these remains unclear. In this paper, we explain the inherent normative uncertainty in debates about the safety of AI systems. We then address this as a problem of vagueness by examining its place in the design, training, and deployment stages of AI system development. We adopt Ruth Chang's theory of intuitive comparability to illustrate the dilemmas that manifest at each stage. We then discuss how stakeholders can navigate these dilemmas by incorporating distinct forms of dissent into the development pipeline, drawing on Elizabeth Anderson's work on the epistemic powers of democratic institutions. We outline a framework of sociotechnical commitments to formal, substantive and discursive challenges that address normative uncertainty across stakeholders, and propose the cultivation of related virtues by those responsible for development.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.