Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Spectral Approximation in Random Order Streams (1911.08800v1)

Published 20 Nov 2019 in math.NA, cs.DS, and cs.NA

Abstract: This paper studies spectral approximation for a positive semidefinite matrix in the online setting. It is known in [Cohen et al. APPROX 2016] that we can construct a spectral approximation of a given $n \times d$ matrix in the online setting if an additive error is allowed. In this paper, we propose an online algorithm that avoids an additive error with the same time and space complexities as the algorithm of Cohen et al., and provides a better upper bound on the approximation size when a given matrix has small rank. In addition, we consider the online random order setting where a row of a given matrix arrives uniformly at random. In this setting, we propose time and space efficient algorithms to find a spectral approximation. Moreover, we reveal that a lower bound on the approximation size in the online random order setting is $\Omega (d \epsilon{-2} \log n)$, which is larger than the one in the offline setting by an $\mathrm{O}\left( \log n \right)$ factor.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.