Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SemanticZ at SemEval-2016 Task 3: Ranking Relevant Answers in Community Question Answering Using Semantic Similarity Based on Fine-tuned Word Embeddings (1911.08743v1)

Published 20 Nov 2019 in cs.CL, cs.AI, and cs.IR

Abstract: We describe our system for finding good answers in a community forum, as defined in SemEval-2016, Task 3 on Community Question Answering. Our approach relies on several semantic similarity features based on fine-tuned word embeddings and topics similarities. In the main Subtask C, our primary submission was ranked third, with a MAP of 51.68 and accuracy of 69.94. In Subtask A, our primary submission was also third, with MAP of 77.58 and accuracy of 73.39.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.