Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Seq2Seq RNN based Gait Anomaly Detection from Smartphone Acquired Multimodal Motion Data (1911.08608v1)

Published 19 Nov 2019 in eess.SP, cs.HC, and cs.LG

Abstract: Smartphones and wearable devices are fast growing technologies that, in conjunction with advances in wireless sensor hardware, are enabling ubiquitous sensing applications. Wearables are suitable for indoor and outdoor scenarios, can be placed on many parts of the human body and can integrate a large number of sensors capable of gathering physiological and behavioral biometric information. Here, we are concerned with gait analysis systems that extract meaningful information from a user's movements to identify anomalies and changes in their walking style. The solution that is put forward is subject-specific, as the designed feature extraction and classification tools are trained on the subject under observation. A smartphone mounted on an ad-hoc made chest support is utilized to gather inertial data and video signals from its built-in sensors and rear-facing camera. The collected video and inertial data are preprocessed, combined and then classified by means of a Recurrent Neural Network (RNN) based Sequence-to-Sequence (Seq2Seq) model, which is used as a feature extractor, and a following Convolutional Neural Network (CNN) classifier. This architecture provides excellent results, being able to correctly assess anomalies in 100% of the cases, for the considered tests, surpassing the performance of support vector machine classifiers.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.