Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Localizing Occluders with Compositional Convolutional Networks (1911.08571v1)

Published 18 Nov 2019 in cs.CV

Abstract: Compositional convolutional networks are generative compositional models of neural network features, that achieve state of the art results when classifying partially occluded objects, even when they have not been exposed to occluded objects during training. In this work, we study the performance of CompositionalNets at localizing occluders in images. We show that the original model is not able to localize occluders well. We propose to overcome this limitation by modeling the feature activations as a mixture of von-Mises-Fisher distributions, which also allows for an end-to-end training of CompositionalNets. Our experimental results demonstrate that the proposed extensions increase the model's performance at localizing occluders as well as at classifying partially occluded objects.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.