Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Multi-domain Conversation Quality Evaluation via User Satisfaction Estimation (1911.08567v1)

Published 18 Nov 2019 in cs.LG, cs.HC, and stat.ML

Abstract: An automated metric to evaluate dialogue quality is vital for optimizing data driven dialogue management. The common approach of relying on explicit user feedback during a conversation is intrusive and sparse. Current models to estimate user satisfaction use limited feature sets and employ annotation schemes with limited generalizability to conversations spanning multiple domains. To address these gaps, we created a new Response Quality annotation scheme, introduced five new domain-independent feature sets and experimented with six machine learning models to estimate User Satisfaction at both turn and dialogue level. Response Quality ratings achieved significantly high correlation (0.76) with explicit turn-level user ratings. Using the new feature sets we introduced, Gradient Boosting Regression model achieved best (rating [1-5]) prediction performance on 26 seen (linear correlation ~0.79) and one new multi-turn domain (linear correlation 0.67). We observed a 16% relative improvement (68% -> 79%) in binary ("satisfactory/dissatisfactory") class prediction accuracy of a domain-independent dialogue-level satisfaction estimation model after including predicted turn-level satisfaction ratings as features.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.