Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Defective Convolutional Networks (1911.08432v2)

Published 19 Nov 2019 in cs.CV

Abstract: Robustness of convolutional neural networks (CNNs) has gained in importance on account of adversarial examples, i.e., inputs added as well-designed perturbations that are imperceptible to humans but can cause the model to predict incorrectly. Recent research suggests that the noises in adversarial examples break the textural structure, which eventually leads to wrong predictions. To mitigate the threat of such adversarial attacks, we propose defective convolutional networks that make predictions relying less on textural information but more on shape information by properly integrating defective convolutional layers into standard CNNs. The defective convolutional layers contain defective neurons whose activations are set to be a constant function. As defective neurons contain no information and are far different from standard neurons in its spatial neighborhood, the textural features cannot be accurately extracted, and so the model has to seek other features for classification, such as the shape. We show extensive evidence to justify our proposal and demonstrate that defective CNNs can defense against black-box attacks better than standard CNNs. In particular, they achieve state-of-the-art performance against transfer-based attacks without any adversarial training being applied.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.