Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A model for predicting price polarity of real estate properties using information of real estate market websites (1911.08382v1)

Published 19 Nov 2019 in cs.LG and stat.ML

Abstract: This paper presents a model that uses the information that sellers publish in real estate market websites to predict whether a property has higher or lower price than the average price of its similar properties. The model learns the correlation between price and information (text descriptions and features) of real estate properties through automatic identification of latent semantic content given by a machine learning model based on doc2vec and xgboost. The proposed model was evaluated with a data set of 57,516 publications of real estate properties collected from 2016 to 2018 of Bogot\'a city. Results show that the accuracy of a classifier that involves text descriptions is slightly higher than a classifier that only uses features of the real estate properties, as text descriptions tends to contain detailed information about the property.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.