Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Routing Between Capsules (1911.08119v1)

Published 19 Nov 2019 in cs.LG and cs.CV

Abstract: Capsule network is the most recent exciting advancement in the deep learning field and represents positional information by stacking features into vectors. The dynamic routing algorithm is used in the capsule network, however, there are some disadvantages such as the inability to stack multiple layers and a large amount of computation. In this paper, we propose an adaptive routing algorithm that can solve the problems mentioned above. First, the low-layer capsules adaptively adjust their direction and length in the routing algorithm and removing the influence of the coupling coefficient on the gradient propagation, so that the network can work when stacked in multiple layers. Then, the iterative process of routing is simplified to reduce the amount of computation and we introduce the gradient coefficient $\lambda$. Further, we tested the performance of our proposed adaptive routing algorithm on CIFAR10, Fashion-MNIST, SVHN and MNIST, while achieving better results than the dynamic routing algorithm.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.