Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Hybrid Morpheme-Word Representation for Machine Translation of Morphologically Rich Languages (1911.08117v1)

Published 19 Nov 2019 in cs.CL and cs.LG

Abstract: We propose a language-independent approach for improving statistical machine translation for morphologically rich languages using a hybrid morpheme-word representation where the basic unit of translation is the morpheme, but word boundaries are respected at all stages of the translation process. Our model extends the classic phrase-based model by means of (1) word boundary-aware morpheme-level phrase extraction, (2) minimum error-rate training for a morpheme-level translation model using word-level BLEU, and (3) joint scoring with morpheme- and word-level LLMs. Further improvements are achieved by combining our model with the classic one. The evaluation on English to Finnish using Europarl (714K sentence pairs; 15.5M English words) shows statistically significant improvements over the classic model based on BLEU and human judgments.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.