Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Partial AUC optimization based deep speaker embeddings with class-center learning for text-independent speaker verification (1911.08077v1)

Published 19 Nov 2019 in cs.LG, cs.SD, and eess.AS

Abstract: Deep embedding based text-independent speaker verification has demonstrated superior performance to traditional methods in many challenging scenarios. Its loss functions can be generally categorized into two classes, i.e., verification and identification. The verification loss functions match the pipeline of speaker verification, but their implementations are difficult. Thus, most state-of-the-art deep embedding methods use the identification loss functions with softmax output units or their variants. In this paper, we propose a verification loss function, named the maximization of partial area under the Receiver-operating-characteristic (ROC) curve (pAUC), for deep embedding based text-independent speaker verification. We also propose a class-center based training trial construction method to improve the training efficiency, which is critical for the proposed loss function to be comparable to the identification loss in performance. Experiments on the Speaker in the Wild (SITW) and NIST SRE 2016 datasets show that the proposed pAUC loss function is highly competitive with the state-of-the-art identification loss functions.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.