Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Learning-Assisted Competitive Algorithms for Peak-Aware Energy Scheduling (1911.07972v1)

Published 18 Nov 2019 in cs.DS, cs.SY, and eess.SY

Abstract: In this paper, we study the peak-aware energy scheduling problem using the competitive framework with machine learning prediction. With the uncertainty of energy demand as the fundamental challenge, the goal is to schedule the energy output of local generation units such that the electricity bill is minimized. While this problem has been tackled using classic competitive design with worst-case guarantee, the goal of this paper is to develop learning-assisted competitive algorithms to improve the performance in a provable manner. We develop two deterministic and randomized algorithms that are provably robust against the poor performance of learning prediction, however, achieve the optimal performance as the error of prediction goes to zero. Extensive experiments using real data traces verify our theoretical observations and show 15.13% improved performance against pure online algorithms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.