Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Eigenvalue Normalized Recurrent Neural Networks for Short Term Memory (1911.07964v1)

Published 18 Nov 2019 in cs.LG and stat.ML

Abstract: Several variants of recurrent neural networks (RNNs) with orthogonal or unitary recurrent matrices have recently been developed to mitigate the vanishing/exploding gradient problem and to model long-term dependencies of sequences. However, with the eigenvalues of the recurrent matrix on the unit circle, the recurrent state retains all input information which may unnecessarily consume model capacity. In this paper, we address this issue by proposing an architecture that expands upon an orthogonal/unitary RNN with a state that is generated by a recurrent matrix with eigenvalues in the unit disc. Any input to this state dissipates in time and is replaced with new inputs, simulating short-term memory. A gradient descent algorithm is derived for learning such a recurrent matrix. The resulting method, called the Eigenvalue Normalized RNN (ENRNN), is shown to be highly competitive in several experiments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.