Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ASV: Accelerated Stereo Vision System (1911.07919v1)

Published 15 Nov 2019 in cs.CV

Abstract: Estimating depth from stereo vision cameras, i.e., "depth from stereo", is critical to emerging intelligent applications deployed in energy- and performance-constrained devices, such as augmented reality headsets and mobile autonomous robots. While existing stereo vision systems make trade-offs between accuracy, performance and energy-efficiency, we describe ASV, an accelerated stereo vision system that simultaneously improves both performance and energy-efficiency while achieving high accuracy. The key to ASV is to exploit unique characteristics inherent to stereo vision, and apply stereo-specific optimizations, both algorithmically and computationally. We make two contributions. Firstly, we propose a new stereo algorithm, invariant-based stereo matching (ISM), that achieves significant speedup while retaining high accuracy. The algorithm combines classic "hand-crafted" stereo algorithms with recent developments in Deep Neural Networks (DNNs), by leveraging the correspondence invariant unique to stereo vision systems. Secondly, we observe that the bottleneck of the ISM algorithm is the DNN inference, and in particular the deconvolution operations that introduce massive compute-inefficiencies. We propose a set of software optimizations that mitigate these inefficiencies. We show that with less than 0.5% hardware area overhead, these algorithmic and computational optimizations can be effectively integrated within a conventional DNN accelerator. Overall, ASV achieves 5x speedup and 85% energy saving with 0.02% accuracy loss compared to today DNN-based stereo vision systems.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.