Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Using Mapping Languages for Building Legal Knowledge Graphs from XML Files (1911.07673v1)

Published 18 Nov 2019 in cs.DB, cs.AI, and cs.IR

Abstract: This paper presents our experience on building RDF knowledge graphs for an industrial use case in the legal domain. The information contained in legal information systems are often accessed through simple keyword interfaces and presented as a simple list of hits. In order to improve search accuracy one may avail of knowledge graphs, where the semantics of the data can be made explicit. Significant research effort has been invested in the area of building knowledge graphs from semi-structured text documents, such as XML, with the prevailing approach being the use of mapping languages. In this paper, we present a semantic model for representing legal documents together with an industrial use case. We also present a set of use case requirements based on the proposed semantic model, which are used to compare and discuss the use of state-of-the-art mapping languages for building knowledge graphs for legal data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.