Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Influence-aware Memory Architectures for Deep Reinforcement Learning (1911.07643v4)

Published 18 Nov 2019 in cs.LG and stat.ML

Abstract: Due to its perceptual limitations, an agent may have too little information about the state of the environment to act optimally. In such cases, it is important to keep track of the observation history to uncover hidden state. Recent deep reinforcement learning methods use recurrent neural networks (RNN) to memorize past observations. However, these models are expensive to train and have convergence difficulties, especially when dealing with high dimensional input spaces. In this paper, we propose influence-aware memory (IAM), a theoretically inspired memory architecture that tries to alleviate the training difficulties by restricting the input of the recurrent layers to those variables that influence the hidden state information. Moreover, as opposed to standard RNNs, in which every piece of information used for estimating Q values is inevitably fed back into the network for the next prediction, our model allows information to flow without being necessarily stored in the RNN's internal memory. Results indicate that, by letting the recurrent layers focus on a small fraction of the observation variables while processing the rest of the information with a feedforward neural network, we can outperform standard recurrent architectures both in training speed and policy performance. This approach also reduces runtime and obtains better scores than methods that stack multiple observations to remove partial observability.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.