Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Inverse Dynamic Games Based on Maximum Entropy Inverse Reinforcement Learning (1911.07503v2)

Published 18 Nov 2019 in eess.SY, cs.GT, cs.MA, and cs.SY

Abstract: We consider the inverse problem of dynamic games, where cost function parameters are sought which explain observed behavior of interacting players. Maximum entropy inverse reinforcement learning is extended to the N-player case in order to solve inverse dynamic games with continuous-valued state and control spaces. We present methods for identification of cost function parameters from observed data which correspond to (i) a Pareto efficient solution, (ii) an open-loop Nash equilibrium or (iii) a feedback Nash equilibrium. Furthermore, we give results on the unbiasedness of the estimation of cost function parameters for each arising class of inverse dynamic game. The applicability of the methods is demonstrated with simulation examples of a nonlinear and a linear-quadratic dynamic game.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.