Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deterministic partial binary circulant compressed sensing matrices (1911.07497v1)

Published 18 Nov 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Compressed sensing (CS) is a signal acquisition paradigm to simultaneously acquire and reduce dimension of signals that admit sparse representation. This is achieved by collecting linear, non-adaptive measurements of a signal, which can be formalized as multiplying the signal with a "measurement matrix". Most of matrices used in CS are random matrices as they satisfy the restricted isometry property (RIP) in an optimal regime of number of measurements with high probability. However, these matrices have their own caveats and for this reason, deterministic measurement matrices have been proposed. While there is a wide classes of deterministic matrices in the literature, we propose a novel class of deterministic matrices using the Legendre symbol. This construction has a simple structure, it enjoys being a binary matrix, and having a partial circulant structure which provides a fast matrix-vector multiplication and a fast reconstruction algorithm. We will derive a bound on the sparsity level of signals that can be measured (and be reconstructed) with this class of matrices. We perform quantization using these matrices, and we verify the performance of these matrices (and compare with other existing constructions) numerically.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.