Papers
Topics
Authors
Recent
2000 character limit reached

Entropy stable discontinuous Galerkin schemes for the Relativistic Hydrodynamic Equations (1911.07488v3)

Published 18 Nov 2019 in math.NA, cs.NA, and physics.comp-ph

Abstract: In this article, we present entropy stable discontinuous Galerkin numerical schemes for equations of special relativistic hydrodynamics with the ideal equation of state. The numerical schemes use the summation by parts (SBP) property of Gauss-Lobatto quadrature rules. To achieve entropy stability for the scheme, we use two-point entropy conservative numerical flux inside the cells and a suitable entropy stable numerical flux at the cell interfaces. The resulting semi-discrete scheme is then shown to entropy stable. Time discretization is performed using SSP Runge-Kutta methods. Several numerical test cases are presented to validate the accuracy and stability of the proposed schemes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.