Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation (1911.07450v2)

Published 18 Nov 2019 in cs.CV

Abstract: Visual navigation is a task of training an embodied agent by intelligently navigating to a target object (e.g., television) using only visual observations. A key challenge for current deep reinforcement learning models lies in the requirements for a large amount of training data. It is exceedingly expensive to construct sufficient 3D synthetic environments annotated with the target object information. In this paper, we focus on visual navigation in the low-resource setting, where we have only a few training environments annotated with object information. We propose a novel unsupervised reinforcement learning approach to learn transferable meta-skills (e.g., bypass obstacles, go straight) from unannotated environments without any supervisory signals. The agent can then fast adapt to visual navigation through learning a high-level master policy to combine these meta-skills, when the visual-navigation-specified reward is provided. Evaluation in the AI2-THOR environments shows that our method significantly outperforms the baseline by 53.34% relatively on SPL, and further qualitative analysis demonstrates that our method learns transferable motor primitives for visual navigation.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.