Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RIP constants for deterministic compressed sensing matrices-beyond Gershgorin (1911.07428v1)

Published 18 Nov 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Compressed sensing (CS) is a signal acquisition paradigm to simultaneously acquire and reduce dimension of signals that admit sparse representations. This is achieved by collecting linear, non-adaptive measurements of a signal, which can be formalized as multiplying the signal with a "measurement matrix". If the measurement satisfies the so-called restricted isometry property (RIP), then it will be appropriate to be used in compressed sensing. While a wide class of random matrices provably satisfy the RIP with high probability, explicit and deterministic constructions have been shown (so far) to satisfy the RIP only in a significantly suboptimal regime. In this paper, we propose two novel approaches for improving the RIP constant estimates based on Gershgorin circle theorem for a specific deterministic construction based on Paley tight frames, obtaining an improvement over the Gershgorin bound by a multiplicative constant. In one approach we use a recent result on the spectra of the skew-adjacency matrices of oriented graphs. In the other approach, we use the so-called Dembo bounds on the extreme eigenvalues of a positive semidefinite Hermitian matrix. We also generalize these bounds and we combine the new bounds with a conjecture we make regarding the distribution of quadratic residues in a finite field to provide a potential path to break the so-called "square-root barrier"-we provide a proof based on the assumption that the conjecture holds.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.