RIP constants for deterministic compressed sensing matrices-beyond Gershgorin (1911.07428v1)
Abstract: Compressed sensing (CS) is a signal acquisition paradigm to simultaneously acquire and reduce dimension of signals that admit sparse representations. This is achieved by collecting linear, non-adaptive measurements of a signal, which can be formalized as multiplying the signal with a "measurement matrix". If the measurement satisfies the so-called restricted isometry property (RIP), then it will be appropriate to be used in compressed sensing. While a wide class of random matrices provably satisfy the RIP with high probability, explicit and deterministic constructions have been shown (so far) to satisfy the RIP only in a significantly suboptimal regime. In this paper, we propose two novel approaches for improving the RIP constant estimates based on Gershgorin circle theorem for a specific deterministic construction based on Paley tight frames, obtaining an improvement over the Gershgorin bound by a multiplicative constant. In one approach we use a recent result on the spectra of the skew-adjacency matrices of oriented graphs. In the other approach, we use the so-called Dembo bounds on the extreme eigenvalues of a positive semidefinite Hermitian matrix. We also generalize these bounds and we combine the new bounds with a conjecture we make regarding the distribution of quadratic residues in a finite field to provide a potential path to break the so-called "square-root barrier"-we provide a proof based on the assumption that the conjecture holds.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.