Testing Properties of Multiple Distributions with Few Samples (1911.07324v1)
Abstract: We propose a new setting for testing properties of distributions while receiving samples from several distributions, but few samples per distribution. Given samples from $s$ distributions, $p_1, p_2, \ldots, p_s$, we design testers for the following problems: (1) Uniformity Testing: Testing whether all the $p_i$'s are uniform or $\epsilon$-far from being uniform in $\ell_1$-distance (2) Identity Testing: Testing whether all the $p_i$'s are equal to an explicitly given distribution $q$ or $\epsilon$-far from $q$ in $\ell_1$-distance, and (3) Closeness Testing: Testing whether all the $p_i$'s are equal to a distribution $q$ which we have sample access to, or $\epsilon$-far from $q$ in $\ell_1$-distance. By assuming an additional natural condition about the source distributions, we provide sample optimal testers for all of these problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.