Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hebbian Synaptic Modifications in Spiking Neurons that Learn (1911.07247v1)

Published 17 Nov 2019 in cs.LG, cs.NE, and stat.ML

Abstract: In this paper, we derive a new model of synaptic plasticity, based on recent algorithms for reinforcement learning (in which an agent attempts to learn appropriate actions to maximize its long-term average reward). We show that these direct reinforcement learning algorithms also give locally optimal performance for the problem of reinforcement learning with multiple agents, without any explicit communication between agents. By considering a network of spiking neurons as a collection of agents attempting to maximize the long-term average of a reward signal, we derive a synaptic update rule that is qualitatively similar to Hebb's postulate. This rule requires only simple computations, such as addition and leaky integration, and involves only quantities that are available in the vicinity of the synapse. Furthermore, it leads to synaptic connection strengths that give locally optimal values of the long term average reward. The reinforcement learning paradigm is sufficiently broad to encompass many learning problems that are solved by the brain. We illustrate, with simulations, that the approach is effective for simple pattern classification and motor learning tasks.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.