Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improve CAM with Auto-adapted Segmentation and Co-supervised Augmentation (1911.07160v5)

Published 17 Nov 2019 in cs.CV

Abstract: Weakly Supervised Object Localization (WSOL) methods generate both classification and localization results by learning from only image category labels. Previous methods usually utilize class activation map (CAM) to obtain target object regions. However, most of them only focus on improving foreground object parts in CAM, but ignore the important effect of its background contents. In this paper, we propose a confidence segmentation (ConfSeg) module that builds confidence score for each pixel in CAM without introducing additional hyper-parameters. The generated sample-specific confidence mask is able to indicate the extent of determination for each pixel in CAM, and further supervises additional CAM extended from internal feature maps. Besides, we introduce Co-supervised Augmentation (CoAug) module to capture feature-level representation for foreground and background parts in CAM separately. Then a metric loss is applied at batch sample level to augment distinguish ability of our model, which helps a lot to localize more related object parts. Our final model, CSoA, combines the two modules and achieves superior performance, e.g. $37.69\%$ and $48.81\%$ Top-1 localization error on CUB-200 and ILSVRC datasets, respectively, which outperforms all previous methods and becomes the new state-of-the-art.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.